Exercise 87

Find the dimensions of the rectangular corral producing the greatest enclosed area split into 3 pens of the same size given 500 feet of fencing.

Solution

Draw a schematic of the rectangular corral, labelling the length and width as L and W, respectively.

The perimeter is the sum of the lengths.

$$
\begin{aligned}
P & =L+L+W+W+W+W \\
& =2 L+4 W
\end{aligned}
$$

It's given to be 500 feet.

$$
500=2 L+4 W
$$

Solve for L.

$$
\begin{gathered}
500-4 W=2 L \\
\frac{1}{2}(500-4 W)=L \\
L=250-2 W
\end{gathered}
$$

Write the formula for the area, substitute the result for the length, and complete the square to write the quadratic function in vertex form.

$$
\begin{aligned}
A=L W & =(250-2 W) W \\
& =250 W-2 W^{2} \\
& =-2\left(W^{2}-125 W\right) \\
& =-2\left[\left(W^{2}-125 W+62.5^{2}\right)-62.5^{2}\right] \\
& =-2\left[(W-62.5)^{2}-3906.25\right] \\
& =-2(W-62.5)^{2}+7812.5
\end{aligned}
$$

Therefore, the maximum area is $A=7812.5 \mathrm{ft}^{2}$, which occurs when $W=62.5 \mathrm{ft}$ and $L=250-2(62.5)=125 \mathrm{ft}$.

